Evaluation of sounder composition products

Vivienne Payne

Jet Propulsion Laboratory, California institute of Technology

AIRS STM, April 2018

IR sounders offer a wealth of information on atmospheric composition that can be used to advance Earth System Science.

The Earth System is complicated....

Image: DLR, after WMO-IGACO

"Townspeople, who have never seen an elephant, examine its appearance in the dark." Image: Walters Art Museum

No one measurement technique can provide all the answers

- The biggest scientific gains are to be had not from analysis of sounder products alone, but from utilization of sounder products in context of other datasets and modeling and/or chemical data assimilation.
- This requires:
 - Observation operators (e.g. averaging kernels)
 - Realistic uncertainty estimates
 - Calculate as part of the retrieval, evaluate using independent reference datasets
- These vary according to:
 - Atmospheric conditions (e.g. temperature, humidity, cloud)
 - Surface conditions (e.g. thermal contrast, surface emissivity)

Sensitivity and errors vary by location/conditions

Example: CrIS CO retrievals from MUSES (D. Fu)

Evaluation of composition products

- Possible sources of information for reference/comparisons
 - Model output (sanity check)
 - Other relevant satellite datasets
 - Long-term/ongoing "reference" datasets
 - Campaign datasets
- Other related perspectives on product evaluation
 - Nalli et al., JGR, 2013, Nalli et al., Fall 2017 NSSTM
 - "Validation Hierarchy" for SNPP/JPSS Cal/Val
 - Bjorn's talk this afternoon

Comparing satellite datasets (ozone example)

TOAR

Tropospheric Ozone Assessment Report

IGAC activity
(IGAC = International Global
Atmospheric Chemistry)

TOAR Mission:

"To provide the research community with an up-to-date scientific assessment of tropospheric ozone's global distribution and trends from the surface to the tropopause."

Annual mean tropospheric column ozone Gaudel et al., in press, Elementa

Ambiguity of Ozone Trends In the Last 2 Decades

The Tropospheric Ozone Assessment Report (TOAR) multi-satellite records show tropospheric ozone burden is changing, but disagree on the sign and magnitude.

Causes are likely sampling, algorithms, vertical sensitivity, and calibration.

Ozone: WOUDC ozonesondes

World Ozone and Ultraviolet Radiation Data Center

Vertical profiles of ozone starting in 1951

Sonde comparisons: TES example

Examples of sonde comparisons (IASI)

Observation operator applied to sonde profiles for comparisons

Sample error covariance:
Assume O3 does not vary.

IASI FOVs within 100 km radius, same IASI granule

$$\mathbf{Q} = \frac{1}{n-1} \sum_{j=1}^{n} (z_j - \overline{z}) (z_j - \overline{z})^{\mathsf{T}}$$

Aircraft campaigns: HIPPO and ATom

- HIPPO data have already been used extensively for satellite validation
 - CO2, CH4, CO, N2O
- Vertical extent:
 - Up to 14 km for select cases
 - Need to make some assumption above top of measured profiles
 - Most useful for species where most of column amount lies in troposphere
- Remote:
 - Most useful for species where signal is "omnipresent" in radiances
- Coincidence criteria: Species-dependent

Figure: Frankenberg et al. [2016]

mage: https://espo.nasa.gov/at

Total Carbon Column Observing Network (TCCON)

TCCON column-average products include XCO2, XHC4, XCO, XN2O, XH2O, XHDO

TCCON

- TCCON measurements are sensitive throughout the column
- IR sounders are <u>not</u>
 - Comparisons should account for differences in vertical sensitivity

TCCON

- One possible approach: De Lange and Landgraf [2017]
 - Take chemistry transport model field
 - Assume reasonable model profile shape
 - Scale model profile by TCCON column-average
 - Apply IR averaging kernel and prior to scaled model profile
 - Compare

Network for the Detection of Atmospheric Composition Change

Composition products from IR sounders (NASA portfolio)

Final thoughts

- Composition records from IR sounders can contribute to various areas in Earth System Science
- Combination of information from different measurement techniques to maximize scientific gains
 - Modeling/assimilation frameworks are key
- We need
 - Observation operators
 - To characterize spatially- and temporally- varying biases
 - To calculate errors and verify using independent datasets
 - Non-trivial!
- There are many products to evaluate.....
- Subset of sounder data
 - For evaluation of data quality, impacts of changes to L2 algorithm or L1B/L1C radiances
 - Global coverage (sub-sampled to reduce number of cases?)
 - Match-ups to reference datasets
 - Span space, time, range of atmospheric conditions
 - Examples: Ozone sondes, HIPPO, ATom, TCCON, NDACC

Back-up slides

Reference datasets

Datasets listed below could offer good value in terms of vertical, spatial, temporal coverage.

Reference dataset		Species Specie						
	03	CO	CH4	CO2	N2O	HDO	HNO3	NH3
WOUDC sondes	X							
HIPPO		Х	X	x	Х			
ATom		X	X	x	Х			
TCCON		Х	x	X	Х	X		
NDACC		X	X			X	X	X

The table could be extended

- ► HIPPO I :: 8 January-30 January 2009
- ► HIPPO II :: 31 October-22 November 2009
- ► HIPPO III :: 24 March-16 April 2010
- ► HIPPO IV :: 14 June-11 July 2011
- ► HIPPO V :: 9 August-9 September 2011

ATom Deployment Schedule

Deployment	Upload	Deployment	Download	
ATom-1 (Summer 2016)	Jun 20 - Jul 27	Jul 28 - Aug 22	Aug 23 - 26	
ATom-2 (Winter 2017)	Dec 4 - Jan 27	Jan 26 - Feb 22	Feb 23 - 25	
ATom-3 (Fall 2017)	Aug 14 - Sep 27	Sep 28 - Oct 26	Oct 27 - 30	
ATom-4 (Spring 2018)	Mar 12 - Apr 23	Apr 24 - May 21	May 22 - 25	

Multi-spectral retrievals can offer improved sensitivity to the lower troposphere

- One year of IASI "clear-sky" sonde matches:
 - 110 km, 7 hours
 - ~500 matches per site
- 20,000 HIPPO matches for AIRS CH4 (all 5 campaigns)
 - Coincidence criteria: 50 km, 9 hours